TS 1: MONDAY MORNING, JULY 23

09:45 AM	10:05 AM	10:25 AM	10:45 AM	11:05 AM	11:25 AM
FLR 7: Hudson	#MS701	Computational Heat Transfe	er, Chair(s): Darrell Pepper		
Compressible Flow and Conjugate Heat Transfer Using Blended RBF Interpolation		An Efficient and Accurate Method for the Transient Heat Conduction in 2D Periodic Structures	On the Use of the Adjoint Method to Evaluate Sensitivities in Adsorbed Natural Gas Storage Systems	Adjoint Based Optimization of a Supersonic Separator	
Michael Harris*, Alain Kassab, Eduardo Divo		Qiang Gao*, Haichao Cui, Ying Feng	Bruno Galelli Chieregatti*, João de Sá Brasil Lima, Ernani Vitillo Volpe, Marcelo Tanaka Hayashi	Jairo Paes Cavalcanti Filho, Ulisses Adonis Silva Costa, Ernani Vitillo Volpe*, Marcelo Tanaka Hayashi	
FLR 9: Marquis-Salon A	#MS705	Computational Methods for	Kinetic Collisional Transpor	t, Chair(s): Jeff Haack	
Title: A Collision-Based Hybrid Method for Linear Transport	Comparison of Accuracy and Computational Cost of Different Numerical Boltzmann Solvers	A Deterministic-stochastic Method for Computing the Boltzmann Collision Integral in O(MN) Operations	Evaluating High Order Discontinuous Galerkin Discretizations of the Boltzmann Collision Integral in O(N^2) Operations Using the Discrete Fourier Transform	Hierarchical Boltzmann Simulations and M(odel)- refinement	
Cory Hauck*	Erik Torres*, Jeff Haack, Irene Gamba, Thierry Magin	Alexander Alekseenko, Truong Nguyen*, Aihua Wood	Alexander Alekseenko, Jeffrey Limbacher*	Manuel Torrilhon*	
FLR 7: Chelsea	#MS714	Numerical Modeling of Gra	nular and Multiphase Flows,	Chair(s): Prof Wei Wang	AND REPORT OF THE PARTY OF THE
Discrete Element Simulation for Industrial Applications		Simulation of Dilute and Dense Non-Spherical Particle Laden Flows: Movement and Orientation Behaviour	Modeling and Prediction of Particle Size Distribution in Milling Process using Discrete Element Method	Coarse Graining DEM for a Non-spherical Particle System	
Mikio Sakai*		Miguel A. Romero-Valle*, Hermann Nirschl, Christoph Goniva	Yuki Tsunazawa*, Chiharu Tokoro	Kazuya Takabatake*, Mikio Sakai	
FLR 7: Gotham	#MS804	Novel Mathematical Models	and Computational Method:	s, Chair(s): N. R. Aluru	
A One-dimensional Model for Large Deformation and Materially Nonlinear Analysis of 3-D Structures	Large Deformation Analysis with Connecting Shell and Solid Elements by Using Nitsche's Method	Schwarz Alternating Implicit Enrichment Methods for Analysis of Kirchhoff-Love Plate Model with Angular Corners	Parameterized Grillage Model and Computational Method of Steel-concrete Composite Waffle Floor Systems Based on Numerical Simulation		
Archana Arbind*, J N Reddy, Arun Srinivasa	Isao Saiki, Takahiro Yamada, Kazumi Matsui, Takeki Yamamoto*	Birce Palta*	Yu-Tao Guo*, Mu-Xuan Tao, Xin Nie, Jian-Sheng Fan		
FLR 9: Marquis-Salon B	#MS807	Numerical Simulation of Er	ngineering and Science, Chai	r(s): Siwen Gao	No. of the Party o
Numerically Efficient Microstructure-based Calculation of Internal Stresses in Superalloys		Response Analysis of Moving Load on Stepped Cantilever Beam	Impact Characteristics Analysis and Fatigue Life Estimation of Recoil Spring	Dynamic Meshing Analysis of Spur Gear Based on the Modified Vector Form Intrinsic Finite Element (VFIFE) Method	
Siwen Gao*, Umaaran Gogilan, Anxin Ma, Alexander Hartmaier		Bo Zhang*, Yunxuan Gong	Zhifang Wei*, Yechang Hu	Xiangying Hou*, Zongde Fang, Jinke Jiang	

TS 2: MONDAY AFTERNOON, JULY 23

02:00 PM	02:20 PM	02:40 PM	03:00 PM	03:20 PM	03:40 PM	
FLR 7: Gramercy	#MS603	Smart Materials across the	Scales: Modeling, Experimen	nt and Simulation, Chair(s): Ste	phan Lange	
Multiscale Study on Origin of Magnetoelectric Effect in Multiferroic Composite Materials	The Magneto-electric Coupling in Multiferroic Composites: Magnetostrictive Preisach and Ferroelectric Switching Model	Imperfect Interfaces in Magnetoelectric Composites and Their Impact on Coupling Coefficients	On Relaxed Energy Potentials in Magnetomechanics	Insights on Constitutive Modeling of Magnetic Shape Memory Alloys		
Yasutomo Uetsuji*, Takeshi Wada	Matthias Labusch*, Jörg Schröder	Alexander Schlosser*, Andreas Ricoeur	Bjoern Kiefer*, Thorsten Bartel	Heidi Feigenbaum*, J. Lance Eberle, Constantin Ciocanel, Glen Dsilva		
FLR 7: Herald	#MS614	Materials Genomics, Chair(s): James Saal & Gilad Kusne				
Materials Genomics and the Future of Structural Alloy Design and Application		ICME Design of High Performance Ni-based and High-Entropy Turbine Alloys	Autonomous Materials Research Systems: Phase Mapping	Linking High-Throughput Binary Calculations to Phase Evolution in Multicomponent Alloys		
David Furrer*		James Saal*, Jiadong Gong, Ricardo Komai, Greg Olson	A. Gilad Kusne*, Brian DeCost, Jason Hattrick-Simpers, Ichiro Takeuchi	James R. Morris*, Louis Santodonato, M. Claudia Troparevsky, Raymond R. Unocic, Peter K. Liaw		
FLR 9: Marquis-Salon A	#MS705	Computational Methods for Kinetic Collisional Transport, Chair(s): Thierry Magin, VKI				
A Conservative, Entropic Multispecies BGK Model	A Heterogeneous Multiscale Method Connecting Kinetic Theory and Molecular Dynamics	Interfacial Mixing in High- energy-density Matter with Multiphysics Kinetic and Molecular Dynamics Models				
Jeff Haack*, Michael S. Murillo, Cory Hauck	Gil Shohet*, Jake Price, Jeff Haack, Mathieu Marciante, Michael S. Murillo	Michael S. Murillo*, Liam Stanton, Jeff Haack				
FLR 7: Chelsea	#MS714	Numerical Modeling of Granular and Multiphase Flows, Chair(s): Prof Mikio Sakai				
Bridging Between EMMS and Nonequilibrium Thermodynamics: Structure-Dependent Analysis of Energy Dissipation and CFD Validation		Meso-scale Nonequilibrium Features in a Gas-Fluidized Bed	DEM Simulations for the Investigations of the Mechanochemical Activation of Copper Ores	Modelling of the Interaction of a Gas-particle Mixture with a Detached Shock		
Yujie Tian*, Wei Wang		Haifeng Wang, Yanpei Chen, Wei Wang*	Masaya Minagawa*, Shosei Hisatomi, Tatsuya Kato, Giuseppe Granata, Chiharu Tokoro	Gentien Marois*, Philippe Villedieu, Julien Mathiaud		
FLR 7: Gotham	#MS804	Novel Mathematical Models	and Computational Method	s, Chair(s): N. R. Aluru		
A Point Dipole CG Model and Quasi-Continuum Treatment of Confined Water	Molecular-mechanical Modeling of Fluid Structure at the Solid-fluid Interface and Transport under Nanoconfinement	Constrained Relative Entropy for Coarse-Grained Force Field Development of Room Temperature Ionic Liquids	Novel Kinetic Model and Kinetic Consistent Algorithm of Magneto Hydro Dynamics	Simulation of Lipid Membrane Rupture via Cellular Automation		
Mohammad Motevaselian*, Sikandar Mashayak, Narayana Aluru	Gerald Wang*, Nicolas Hadjiconstantinou	Alireza Moradzadeh*, Hossein Motevaselian, Sikandar Mashayak, Narayana Aluru	Valeri Saveliev*, Boris Chetverushkin, Andrey Saveliev	Abhay Gupta*, Irep Gozen, Michael Taylor		

TS 3: MONDAY EVENING, JULY 23

04:30 PM	04:50 PM	05:10 PM	05:30 PM	05:50 PM	06:10 PM	
FLR 7: Hudson	#MS701	Computational Heat Transf	er, Chair(s): Dave Carrington			
Study of Turbulent Flows in an Air-filled Differentially-heated Cavity of Aspect Ratio 4: A Comparison between DNS, LES and Experimental Results	Direct Numerical Simulation of Thermal Turbulence and Conjugated Heat Transfer in Film-cooling Structures	An Implicit Generalized Finite- Difference Method for Solving a Generalized Dual-Phase Lag Equation	Microstructural Modeling of Thermal Energy Storage Phenomena in Cement Pastes Containing Microencapsulated Phase Change Materials (MPCM)	A Random Choice Method for Modelling the Rubinstein and Stefan-like Problems	Numerical Simulations of the Ignition Dynamics in an Annular Combustor	
Nicolas Thiers*, Olivier Skurtys, Romain Gers	Ting Yu*, Hongyi Xu, Duo Wang	Lukasz Turchan*	Christoph Mankel, Antonio Caggiano*, Eddie Koenders	Sabrina Carpy*, Hélène Mathis, Teodor Burghelea, Cathy Castelain, Gael Choblet, Anais Crestetto, Caroline Dumoulin, Olivier Grasset, Guy Moebs, Erwan Le Menn, Gabriel Tobie	Yifan Xia*, Yao Zheng, Dongmei Zhao, Haiwen Ge, Gaofeng Wang	
FLR 9: Marquis-Salon A	#MS705	Computational Methods for Kinetic Collisional Transport, Chair(s): TBA				
A Numeric Algorithm for Solving Kinetic Equations Across All Flow Regimes	A Low-Mach Number Preconditioner for the 10- Moment Closure with Application to Non-Equilibrium Gas Flows	Application and Numerical Solution of 14-Moment Maximum-Entropy-Based Moment Closures for Describing Non-Equilibrium Gaseous Flows with Shocks				
Bo Kong*, Rodney Fox	James McDonald*, Fabien Giroux	Clinton Groth*, Lucie Freret				
FLR 7: Chelsea	#MS714	Numerical Modeling of Granular and Multiphase Flows, Chair(s): Dr Yuki Tsunazawa				
Modeling of Locked Particle Behavior in Magnetic Separation Using DEM and FEM	Investigation of Relationship between Copper Liberation and Inner Force of High Pressure Grinding Roll by Applying DEM Simulation	Mathematical Modelling of Water-flooding Techniques in Heterogeneous Hydrocarbon Reservoirs				
Yuki Tsunazawa, Takuma Tokoro, Giuseppe Granata, Masanori Kaneko*, Chiharu Tokoro	Yu Nagata*, Yukihiro Sawamura, Masaya Minagawa, Yuki Tsunazawa, Giuseppe Granata, Ryo Kawarabuki, Kohei Mitsuhashi, Kouji Tsukada, Takashi Misumi, Chiharu Tokoro	Tufan Ghosh*, G. P. Raja Sekhar, Debasis Deb				
FLR 7: Gotham	#MS804	Novel Mathematical Model	s and Computational Method	s, Chair(s): M. H. Motevaselia	an the following treats	
Multiresolution Adaptive Wavelet Solver for Nonlinear Partial Differential Equations with Error Control	Computation of Incompressible Navier-Stokes Equations by Local Radial Basis Function Collocation Method	Fast Spectral Solvers without Linear Reference Medium	The Strategy for Modeling and Solving Uncertainly Defined Boundary Value Problems			
Cale Harnish*, Karel Matouš, Daniel Livescu	Bing-Han Lin, Bang-Fuh Chen*, Chia-Cheng Tsai	Till Junge*	Eugeniusz Zieniuk*, Marta Kapturczak, Agnieszka Boltuc			